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The symmetric group S3 and various
constructions of its braid group B3

▶ The symmetric group S3 is a quotient of the 3-strand
braid group B3:

S3 = ⟨ s1, s2 | s21 = 1 = s22, s1s2s1 = s2s1s2 ⟩
B3 = ⟨ σ1, σ2 | σ1σ2σ1 = σ2σ1σ2 ⟩

▶ The group B3 is obtained from S3 by removing the
relations s21 = 1 = s22 in the above presentation.
”Artin-Tits group”

▶ The group S3 also acts by reflections on a 2-dim. (real,
or complex) vector space V , and B3 = π1(Vreg/W ).
”Complex braid group”

▶ The group B3 is also the fundamental group of the
complement of the trefoil knot in R3. Does this fit into
a more general theory as for the above two situations ?
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Torus knot groups and reflection groups

▶ Let n,m ≥ 2, n < m, (n,m) = 1. The torus knot
group G(n,m) can be defined by the presentation

⟨ x1, x2, . . . , xn | x1x2 · · ·︸ ︷︷ ︸
m factors

= x2x3 · · ·︸ ︷︷ ︸
m factors

= · · · = xnx1 · · ·︸ ︷︷ ︸
m factors

⟩

▶ Example: for n = 2 and m = 3 we have G(2, 3) ∼= B3.
The finite CRG with braid group a torus knot group:

W BW

S3, G4, G8, G16 G(2, 3) = B3

I2(ℓ) with odd ℓ G(2, ℓ) = Artin group of type I2(ℓ)
G12 G(3, 4)
G20 G(2, 5) = Artin group of type I2(5)
G22 G(3, 5)

▶ W is obtained from BW = G(n,m) by adding rel. of
the form xki = 1 for some k ≥ 2. We get all the finite
CRG of rank 2 with a single conjugacy class of
reflecting hyperplanes.
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Toric reflection groups

▶ Question: Let n,m ≥ 2 as above, k ≥ 2. What can be
said about the group W (k, n,m) with presentation〈
x1, x2, . . . , xn

∣∣∣∣ xki = 1 for i = 1, . . . , n,
x1x2 · · ·︸ ︷︷ ︸
m factors

= x2x3 · · ·︸ ︷︷ ︸
m factors

= · · · = xnx1 · · ·︸ ︷︷ ︸
m factors

〉
.

▶ More precise questions:
▶ When is W (k, n,m) finite ?
▶ Does W (k, n,m) admit a structure of (complex)

reflection group (of rank two) in any reasonable sense?
If yes, can we classify them as reflection groups?

▶ Is G(n,m) the ”braid group” of W (k, n,m)?

▶ Example (Coxeter 1957): the group W (k, 2, 3), i.e., the
quotient of the three-strand braid group B3 by the
relations σk

1 = 1 = σk
2 , is finite if and only if k ≤ 5.

▶ We call a group of the form W (k, n,m) a toric
reflection group.
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J-groups

Achar and Aubert introduced a family of (in general infinite)
groups, called J-groups.

Let a, b, c three integers ≥ 1. Let J

(
a b c

)
be the group

defined by the presentation

⟨ s, t, u | sa = tb = uc = 1, stu = tus = ust ⟩

Let a′, b′ and c′ be three pairwise coprime integers, dividing

a, b and c respectively. Let J

(
a b c
a′ b′ c′

)
be the normal

subgroup of J

(
a b c

)
generated by sa

′
, tb

′
and uc

′
. We

omit 1’s in the second row of parameters, consistently with

J

(
a b c
1 1 1

)
= J

(
a b c

)
.
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Toric reflection groups are J-groups

Theorem (Achar-Aubert, 2008)

A J-group is finite if and only if it is a finite complex
reflection group of rank 2.

▶ Achar and Aubert also showed that every J-group G
admits a rep. ρ : G −→ GL2(C), where ρ(s), ρ(t) and
ρ(u) are reflections preserving a Hermitian form (so
that the image is a CRG). When G is not finite, this
representation is not faithful in general.

▶ This result is somewhat reminiscent of the following
theorem : let W be a Coxeter group. Then W is a real
reflection group if and only if W is finite.

Theorem (Toric reflection groups are J-groups)

Let k, n,m be three integers ≥ 2 with n < m and n, m

coprime. We have W (k, n,m) ∼= J

(
k n m

n m

)
.
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Reflection group structure on W (k, n,m)

Corollary

A toric reflection group is finite if and only if it is a finite
CRG of rank two with a single conjugacy class of reflecting
hyperplanes (we listed all of them above).

▶ The isom. above maps conjugates of nontrivial powers
of s, t and u to conjugates of nontrivial powers of the
xi’s. In the case where W (k, n,m) is finite, these are
precisely the reflections in W (k, n,m).

▶ Call an element of W (k, n,m) a reflection if it is a
conjugate of a nontrivial power of some xi.

▶ In this way we can put a ”reflection-like” group
structure on W (k, n,m).
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Center of toric reflection groups and classification

▶ It is known that the center of G(n,m) is infinite cyclic,
generated by (x1x2 · · ·xn)m (Schreier, 1923).

▶ Let c = (x1x2 · · ·xn)m be the image of the above
element in W (k, n,m).

▶ Denote by Wk,n,m the rank-three Coxeter group〈
r1, r2, r3

∣∣∣∣ r21 = r22 = r23 = 1,
(r1r2)

k = (r2r3)
n = (r3r1)

m = 1

〉
▶ Denote by W+

k,n,m the alternating subgroup of Wk,n,m,
i.e., the kernel of the homomorphism Wk,n,m −→ Z/2Z,
ri 7→ 1.
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Center of toric reflection groups and
classification, II

Theorem

1. There is a short exact sequence

1 −→ ⟨c⟩ −→ W (k, n,m) −→ W+
k,n,m −→ 1.

2. We have Z(W+
k,n,m) = {1}.

Corollary

The center of W (k, n,m) is cyclic, generated by c.

Questions

1. When W (k, n,m) is infinite, is c of finite order?

2. Does W (k, n,m) have a solvable word problem?
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Center of toric reflection groups and
classification, III

▶ Say that two toric reflection groups W (k, n,m) and
W (k′, n′,m′) are isomorphic as reflection groups (∼=ref)
if there is an isomorphism φ between them such that
both φ and φ−1 map reflections to reflections.

Theorem

Let W (k, n,m) and W (k′, n′,m′) be two toric reflection
groups. Then W (k, n,m) ∼=ref W (k′, n′,m′) if and only if
(k, n,m) = (k′, n′,m′).

Corollary

Let W = W (k, n,m). Define BW as G(n,m). Then BW is
well-defined, i.e., only depends on the reflection group
structure of W (k, n,m). Moreover, if W is finite, then BW

is the complex braid group of W (k, n,m).
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Example and questions

▶ Consider W (6, 2, 3), i.e., Coxeter’s truncated braid
group at k = 6 (it is an infinite group)

⟨ s, t | s6 = 1 = t6, sts = tst ⟩

▶ The map to

W6,2,3 =

〈
r1, r2, r3

∣∣∣∣ r21 = r22 = r23 = 1,
(r1r2)

6 = (r2r3)
3 = (r3r1)

2 = 1

〉
sends s to r1r2 and t to r2r1r2r3.

▶ We do not know if c = (sts)2 = (st)3 has finite order or
not in W (6, 2, 3) (equiv., if st has finite order or not).

▶ The group W (6, 2, 3) has no faithful two-dimensional
complex reflection representation. Hence one cannot
define BW as π1(Vreg/W ).

▶ Questions: Is there a geometric definition of the braid
group of a TRG ? Does c have finite order ? Do TRG
have a solvable word problem ?
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Thank you for your
attention!
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